Ligand source activities (1 row/activity)





Ligands (move mouse cursor over ligand name to see structure) Receptor Assay information Chemical information
Sel. page Common
name
GPCRdb
ID
#Vendors

Reference
ligand
Fold
selectivity
# Tested
GPCRs
Species

p-value
(-log)
Activity
Type
Activity
Relation
Activity
Value
AssayType

Assay
Description
Source

Mol
weight
Rot
Bonds
H don

H acc

LogP

Smiles

DOI

1499 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
3779 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
536 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
CHEMBL434 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
DB01064 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
1193 1656 108 None -1 11 Human 8.2 pEC50 = 8.2 Functional
calcium imaging in ransfected human embryonic kidney (HEK)-293Tcalcium imaging in ransfected human embryonic kidney (HEK)-293T
Drug Central 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F None
2447 1656 108 None -1 11 Human 8.2 pEC50 = 8.2 Functional
calcium imaging in ransfected human embryonic kidney (HEK)-293Tcalcium imaging in ransfected human embryonic kidney (HEK)-293T
Drug Central 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F None
3371 1656 108 None -1 11 Human 8.2 pEC50 = 8.2 Functional
calcium imaging in ransfected human embryonic kidney (HEK)-293Tcalcium imaging in ransfected human embryonic kidney (HEK)-293T
Drug Central 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F None
CHEMBL23588 1656 108 None -1 11 Human 8.2 pEC50 = 8.2 Functional
calcium imaging in ransfected human embryonic kidney (HEK)-293Tcalcium imaging in ransfected human embryonic kidney (HEK)-293T
Drug Central 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F None
DB02266 1656 108 None -1 11 Human 8.2 pEC50 = 8.2 Functional
calcium imaging in ransfected human embryonic kidney (HEK)-293Tcalcium imaging in ransfected human embryonic kidney (HEK)-293T
Drug Central 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F None
1499 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
3779 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
536 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
CHEMBL434 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
DB01064 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R14 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
1183 3971 0 None -1 3 Human 3.2 pEC50 = 3.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 152 2 1 3 1.2 COc1cc(C=O)ccc1O 34307435
6412 3971 0 None -1 3 Human 3.2 pEC50 = 3.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 152 2 1 3 1.2 COc1cc(C=O)ccc1O 34307435
CHEMBL13883 3971 0 None -1 3 Human 3.2 pEC50 = 3.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 152 2 1 3 1.2 COc1cc(C=O)ccc1O 34307435
12437 1171 0 None - 1 Human 3.5 pEC50 = 3.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 268 0 2 5 3.1 C1=CC2=C(C=C1O)OC3=C2C(=O)OC4=C3C=CC(=C4)O 21942422
5281707 1171 0 None - 1 Human 3.5 pEC50 = 3.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 268 0 2 5 3.1 C1=CC2=C(C=C1O)OC3=C2C(=O)OC4=C3C=CC(=C4)O 21942422
CHEMBL30707 1171 0 None - 1 Human 3.5 pEC50 = 3.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 268 0 2 5 3.1 C1=CC2=C(C=C1O)OC3=C2C(=O)OC4=C3C=CC(=C4)O 21942422
2826 1784 137 None -64 7 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 270 1 3 5 2.6 Oc1ccc(cc1)c1coc2c(c1=O)c(O)cc(c2)O 30009876
5280961 1784 137 None -64 7 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 270 1 3 5 2.6 Oc1ccc(cc1)c1coc2c(c1=O)c(O)cc(c2)O 30009876
CHEMBL44 1784 137 None -64 7 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 270 1 3 5 2.6 Oc1ccc(cc1)c1coc2c(c1=O)c(O)cc(c2)O 30009876
DB01645 1784 137 None -64 7 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 270 1 3 5 2.6 Oc1ccc(cc1)c1coc2c(c1=O)c(O)cc(c2)O 30009876
12444 1940 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 2 3 6 2.5 COC1=C(C=CC(=C1)C2CC(=O)C3=C(C=C(C=C3O2)O)O)O 24117141
3512637 1940 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 2 3 6 2.5 COC1=C(C=CC(=C1)C2CC(=O)C3=C(C=C(C=C3O2)O)O)O 24117141
CHEMBL398282 1940 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 2 3 6 2.5 COC1=C(C=CC(=C1)C2CC(=O)C3=C(C=C(C=C3O2)O)O)O 24117141
11095 1583 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 288 1 4 6 2.2 C1C(OC2=CC(=CC(=C2C1=O)O)O)C3=CC(=C(C=C3)O)O 24117141
12442 1583 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 288 1 4 6 2.2 C1C(OC2=CC(=CC(=C2C1=O)O)O)C3=CC(=C(C=C3)O)O 24117141
CHEMBL307893 1583 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 288 1 4 6 2.2 C1C(OC2=CC(=CC(=C2C1=O)O)O)C3=CC(=C(C=C3)O)O 24117141
12449 3606 69 None -22 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 482 4 5 10 2.4 COC1=C(C=CC(=C1)[C@@H]2[C@H](OC3=C(O2)C=C(C=C3)[C@@H]4[C@H](C(=O)C5=C(C=C(C=C5O4)O)O)O)CO)O 24117141
31553 3606 69 None -22 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 482 4 5 10 2.4 COC1=C(C=CC(=C1)[C@@H]2[C@H](OC3=C(O2)C=C(C=C3)[C@@H]4[C@H](C(=O)C5=C(C=C(C=C5O4)O)O)O)CO)O 24117141
CHEMBL431701 3606 69 None -22 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 482 4 5 10 2.4 COC1=C(C=CC(=C1)[C@@H]2[C@H](OC3=C(O2)C=C(C=C3)[C@@H]4[C@H](C(=O)C5=C(C=C(C=C5O4)O)O)O)CO)O 24117141
DB09298 3606 69 None -22 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 482 4 5 10 2.4 COC1=C(C=CC(=C1)[C@@H]2[C@H](OC3=C(O2)C=C(C=C3)[C@@H]4[C@H](C(=O)C5=C(C=C(C=C5O4)O)O)O)CO)O 24117141
12441 3140 0 None 1 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 242 1 2 3 2.8 C1C(COC2=C1C=CC(=C2)O)C3=CC=C(C=C3)O 21942422
382975 3140 0 None 1 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 242 1 2 3 2.8 C1C(COC2=C1C=CC(=C2)O)C3=CC=C(C=C3)O 21942422
CHEMBL1957037 3140 0 None 1 2 Human 4.3 pEC50 = 4.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 242 1 2 3 2.8 C1C(COC2=C1C=CC(=C2)O)C3=CC=C(C=C3)O 21942422
12443 1584 0 None - 1 Human 4.4 pEC50 = 4.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 288 3 5 6 2.1 C1=CC(=C(C=C1/C=C/C(=O)C2=C(C=C(C=C2O)O)O)O)O 24117141
5461154 1584 0 None - 1 Human 4.4 pEC50 = 4.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 288 3 5 6 2.1 C1=CC(=C(C=C1/C=C/C(=O)C2=C(C=C(C=C2O)O)O)O)O 24117141
CHEMBL127409 1584 0 None - 1 Human 4.4 pEC50 = 4.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 288 3 5 6 2.1 C1=CC(=C(C=C1/C=C/C(=O)C2=C(C=C(C=C2O)O)O)O)O 24117141
12450 3859 0 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 11 0 6 2.4 CCCC(=O)OCC(COC(=O)CCC)OC(=O)CCC 24285091
6050 3859 0 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 11 0 6 2.4 CCCC(=O)OCC(COC(=O)CCC)OC(=O)CCC 24285091
CHEMBL118722 3859 0 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 11 0 6 2.4 CCCC(=O)OCC(COC(=O)CCC)OC(=O)CCC 24285091
DB12709 3859 0 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 302 11 0 6 2.4 CCCC(=O)OCC(COC(=O)CCC)OC(=O)CCC 24285091
4285 3110 122 None -2 3 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 274 4 4 5 2.3 Oc1ccc(cc1)CCC(=O)c1c(O)cc(cc1O)O 24117141
4788 3110 122 None -2 3 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 274 4 4 5 2.3 Oc1ccc(cc1)CCC(=O)c1c(O)cc(cc1O)O 24117141
CHEMBL45068 3110 122 None -2 3 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 274 4 4 5 2.3 Oc1ccc(cc1)CCC(=O)c1c(O)cc(cc1O)O 24117141
DB07810 3110 122 None -2 3 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 274 4 4 5 2.3 Oc1ccc(cc1)CCC(=O)c1c(O)cc(cc1O)O 24117141
445154 3320 127 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 228 2 3 3 3.0 Oc1ccc(cc1)/C=C/c1cc(O)cc(c1)O 24117141
8741 3320 127 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 228 2 3 3 3.0 Oc1ccc(cc1)/C=C/c1cc(O)cc(c1)O 24117141
CHEMBL165 3320 127 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 228 2 3 3 3.0 Oc1ccc(cc1)/C=C/c1cc(O)cc(c1)O 24117141
DB02709 3320 127 None - 1 Human 4.5 pEC50 = 4.5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 228 2 3 3 3.0 Oc1ccc(cc1)/C=C/c1cc(O)cc(c1)O 24117141
12447 2850 0 None - 1 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology None None None None 29799189
6914579 2850 0 None - 1 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology None None None None 29799189
CHEMBL259352 2850 0 None - 1 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology None None None None 29799189
DB07928 2850 0 None - 1 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology None None None None 29799189
2291 3122 0 None 3 2 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 292 1 1 6 -0.1 CC(=C)[C@@H]1[C@H]2OC(=O)[C@@H]1[C@]1([C@]3([C@@H]2OC(=O)[C@]23[C@@H](C1)O2)C)O 15178431
442292 3122 0 None 3 2 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 292 1 1 6 -0.1 CC(=C)[C@@H]1[C@H]2OC(=O)[C@@H]1[C@]1([C@]3([C@@H]2OC(=O)[C@]23[C@@H](C1)O2)C)O 15178431
CHEMBL47244 3122 0 None 3 2 Human 4.7 pEC50 = 4.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 292 1 1 6 -0.1 CC(=C)[C@@H]1[C@H]2OC(=O)[C@@H]1[C@]1([C@]3([C@@H]2OC(=O)[C@]23[C@@H](C1)O2)C)O 15178431
261491 369 48 None 2 2 Human 4.8 pEC50 = 4.8 Functional
UnclassifiedUnclassified
Guide to Pharmacology 152 1 0 1 2.3 O=C1C[C@]2([C@@H]([C@H]1C)C2)C(C)C 15178431
5344 369 48 None 2 2 Human 4.8 pEC50 = 4.8 Functional
UnclassifiedUnclassified
Guide to Pharmacology 152 1 0 1 2.3 O=C1C[C@]2([C@@H]([C@H]1C)C2)C(C)C 15178431
CHEMBL1444078 369 48 None 2 2 Human 4.8 pEC50 = 4.8 Functional
UnclassifiedUnclassified
Guide to Pharmacology 152 1 0 1 2.3 O=C1C[C@]2([C@@H]([C@H]1C)C2)C(C)C 15178431
12428 3006 0 None - 1 Human 5.0 pEC50 = 5.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 248 0 0 3 2.8 C/C/1=C\CC[C@@]2([C@H](O2)[C@@H]3[C@@H](CC1)C(=C)C(=O)O3)C 30009876
7251185 3006 0 None - 1 Human 5.0 pEC50 = 5.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 248 0 0 3 2.8 C/C/1=C\CC[C@@]2([C@H](O2)[C@@H]3[C@@H](CC1)C(=C)C(=O)O3)C 30009876
CHEMBL465158 3006 0 None - 1 Human 5.0 pEC50 = 5.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 248 0 0 3 2.8 C/C/1=C\CC[C@@]2([C@H](O2)[C@@H]3[C@@H](CC1)C(=C)C(=O)O3)C 30009876
12440 1326 0 None 4 2 Human 5.0 pEC50 = 5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 286 1 4 6 2.3 C1=CC=C(C(=C1)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O 24117141
5281610 1326 0 None 4 2 Human 5.0 pEC50 = 5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 286 1 4 6 2.3 C1=CC=C(C(=C1)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O 24117141
CHEMBL503168 1326 0 None 4 2 Human 5.0 pEC50 = 5 Functional
UnclassifiedUnclassified
Guide to Pharmacology 286 1 4 6 2.3 C1=CC=C(C(=C1)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O 24117141
12448 3468 0 None - 1 Human 5.0 pEC50 = 5.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 246 0 0 3 2.4 C[C@H]1[C@@H]2CC[C@]3(C=CC(=O)C(=C3[C@H]2OC1=O)C)C 30009876
221071 3468 0 None - 1 Human 5.0 pEC50 = 5.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 246 0 0 3 2.4 C[C@H]1[C@@H]2CC[C@]3(C=CC(=O)C(=C3[C@H]2OC1=O)C)C 30009876
CHEMBL259254 3468 0 None - 1 Human 5.0 pEC50 = 5.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 246 0 0 3 2.4 C[C@H]1[C@@H]2CC[C@]3(C=CC(=O)C(=C3[C@H]2OC1=O)C)C 30009876
5215 2386 132 None 1 4 Human 5.2 pEC50 = 5.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 286 1 4 6 2.3 Oc1cc(O)c2c(c1)oc(cc2=O)c1ccc(c(c1)O)O 24117141
5280445 2386 132 None 1 4 Human 5.2 pEC50 = 5.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 286 1 4 6 2.3 Oc1cc(O)c2c(c1)oc(cc2=O)c1ccc(c(c1)O)O 24117141
CHEMBL151 2386 132 None 1 4 Human 5.2 pEC50 = 5.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 286 1 4 6 2.3 Oc1cc(O)c2c(c1)oc(cc2=O)c1ccc(c(c1)O)O 24117141
12446 2847 0 None - 1 Human 5.7 pEC50 = 5.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 402 7 0 8 3.5 COC1=C(C=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C(=C3OC)OC)OC)OC)OC 28834122
72344 2847 0 None - 1 Human 5.7 pEC50 = 5.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 402 7 0 8 3.5 COC1=C(C=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C(=C3OC)OC)OC)OC)OC 28834122
CHEMBL76447 2847 0 None - 1 Human 5.7 pEC50 = 5.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 402 7 0 8 3.5 COC1=C(C=C(C=C1)C2=CC(=O)C3=C(O2)C(=C(C(=C3OC)OC)OC)OC)OC 28834122
12438 471 0 None -6 3 Human 6.3 pEC50 = 6.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 341 3 1 6 3.3 COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O 30009876
12438 471 0 None -6 3 Human 6.3 pEC50 = 6.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 341 3 1 6 3.3 COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O 38776963
2236 471 0 None -6 3 Human 6.3 pEC50 = 6.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 341 3 1 6 3.3 COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O 30009876
2236 471 0 None -6 3 Human 6.3 pEC50 = 6.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 341 3 1 6 3.3 COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O 38776963
CHEMBL93353 471 0 None -6 3 Human 6.3 pEC50 = 6.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 341 3 1 6 3.3 COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O 30009876
CHEMBL93353 471 0 None -6 3 Human 6.3 pEC50 = 6.3 Functional
UnclassifiedUnclassified
Guide to Pharmacology 341 3 1 6 3.3 COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O 38776963
1193 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 31236627
1193 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 38776963
2447 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 31236627
2447 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 38776963
3371 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 31236627
3371 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 38776963
CHEMBL23588 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 31236627
CHEMBL23588 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 38776963
DB02266 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 31236627
DB02266 1656 108 None -1 11 Human 6.6 pEC50 = 6.6 Functional
UnclassifiedUnclassified
Guide to Pharmacology 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 38776963
13326 1052 0 None - 1 Human 7.1 pEC50 = 7.1 Functional
UnclassifiedUnclassified
Guide to Pharmacology 321 3 2 6 2.7 CC1=CC(=NC(NC2=C(C=CC=C2)C3=NN=NN3)=N1)C(F)(F)F 36847646
167312460 1052 0 None - 1 Human 7.1 pEC50 = 7.1 Functional
UnclassifiedUnclassified
Guide to Pharmacology 321 3 2 6 2.7 CC1=CC(=NC(NC2=C(C=CC=C2)C3=NN=NN3)=N1)C(F)(F)F 36847646
CHEMBL5279691 1052 0 None - 1 Human 7.1 pEC50 = 7.1 Functional
UnclassifiedUnclassified
Guide to Pharmacology 321 3 2 6 2.7 CC1=CC(=NC(NC2=C(C=CC=C2)C3=NN=NN3)=N1)C(F)(F)F 36847646
12445 2384 0 None - 1 Human 5.9 pIC50 = 5.9 Functional
UnclassifiedUnclassified
Guide to Pharmacology 414 9 2 4 6.9 CC(C)CC(=O)C1=C(C(=C(C(C1=O)(CC=C(C)C)CC=C(C)C)O)CC=C(C)C)O None
68051 2384 0 None - 1 Human 5.9 pIC50 = 5.9 Functional
UnclassifiedUnclassified
Guide to Pharmacology 414 9 2 4 6.9 CC(C)CC(=O)C1=C(C(=C(C(C1=O)(CC=C(C)C)CC=C(C)C)O)CC=C(C)C)O None
CHEMBL480267 2384 0 None - 1 Human 5.9 pIC50 = 5.9 Functional
UnclassifiedUnclassified
Guide to Pharmacology 414 9 2 4 6.9 CC(C)CC(=O)C1=C(C(=C(C(C1=O)(CC=C(C)C)CC=C(C)C)O)CC=C(C)C)O None




Ligands (move mouse cursor over ligand name to see structure) Receptor Assay information Chemical information
Sel. page Similar-
ity
Common
name
GPCRdb
ID
#Vendors

Reference
ligand
Fold
selectivity
# Tested
GPCRs
Species

p-value
(-log)
Activity
Type
Activity
Relation
Activity
Value
Assay
Type
Assay
Description
Source

Mol
weight
Rot
Bonds
H don

H acc

LogP

Smiles

DOI

CHEMBL5275180 193843 0 None - 0 Human 7.0 pEC50 = 7 Binding
Partial agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayPartial agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 373 3 2 4 4.6 FC(F)(F)c1cc(Nc2ccccc2-c2nnn[nH]2)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5265924 193464 0 None - 0 Human 6.0 pEC50 = 6.0 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 307 3 2 6 2.4 FC(F)(F)c1nccc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5268477 193566 0 None - 0 Human 5.9 pEC50 = 5.9 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 282 3 2 3 3.5 O=C(O)c1ccccc1Nc1cncc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5280454 194067 0 None - 0 Human 5.9 pEC50 = 5.9 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 331 3 2 6 2.4 C#Cc1cc(C(F)(F)F)nc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5273955 193788 0 None - 2 Human 6.8 pEC50 = 6.8 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 305 3 2 2 4.1 C#Cc1cc(Nc2ccccc2C(=O)O)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5274304 193807 0 None - 0 Human 6.8 pEC50 = 6.8 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 307 3 2 6 2.4 FC(F)(F)c1ccnc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5274977 193833 0 None - 0 Human 5.8 pEC50 = 5.8 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 283 3 2 4 2.9 O=C(O)c1ccccc1Nc1nccc(C(F)(F)F)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5277615 193939 0 None - 0 Human 6.8 pEC50 = 6.8 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 306 3 2 3 4.0 N#Cc1ccc(Nc2ccccc2C(=O)O)cc1C(F)(F)F 10.1021/acs.jmedchem.2c01997
CHEMBL5280542 194074 0 None - 0 Human 6.8 pEC50 = 6.8 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 306 3 2 3 4.0 N#Cc1cc(Nc2ccccc2C(=O)O)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5285283 194291 0 None - 0 Human 5.8 pEC50 = 5.8 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 295 3 2 2 4.5 Cc1c(Nc2ccccc2C(=O)O)cccc1C(F)(F)F 10.1021/acs.jmedchem.2c01997
122192740 123814 0 None - 0 Human 6.7 pEC50 = 6.7 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 339 4 2 2 5.8 O=C(O)c1ccccc1Nc1cccc(S(F)(F)(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL3623735 123814 0 None - 0 Human 6.7 pEC50 = 6.7 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 339 4 2 2 5.8 O=C(O)c1ccccc1Nc1cccc(S(F)(F)(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5279381 194024 0 None - 0 Human 6.7 pEC50 = 6.7 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 295 3 2 2 4.5 Cc1cc(Nc2ccccc2C(=O)O)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5288875 194446 0 None - 0 Human 5.7 pEC50 = 5.7 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 359 3 2 2 4.9 O=C(O)c1ccccc1Nc1cccc(C(F)(F)F)c1Br 10.1021/acs.jmedchem.2c01997
72736882 103755 0 None - 0 Human 6.6 pEC50 = 6.6 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 359 3 2 2 4.9 O=C(O)c1ccccc1Nc1cc(Br)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL3088246 103755 0 None - 0 Human 6.6 pEC50 = 6.6 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 359 3 2 2 4.9 O=C(O)c1ccccc1Nc1cc(Br)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5277281 193929 0 None - 0 Human 6.5 pEC50 = 6.5 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 332 3 2 7 2.3 N#Cc1cc(C(F)(F)F)nc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5278834 193998 0 None - 0 Human 6.5 pEC50 = 6.5 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 359 3 2 2 4.9 O=C(O)c1ccccc1Nc1ccc(Br)c(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5278171 193967 0 None - 0 Human 6.5 pEC50 = 6.5 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 295 3 2 2 4.5 Cc1ccc(Nc2ccccc2C(=O)O)cc1C(F)(F)F 10.1021/acs.jmedchem.2c01997
CHEMBL5265867 193459 0 None - 0 Human 5.5 pEC50 = 5.5 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 306 3 2 5 3.0 FC(F)(F)c1cc(Nc2ccccc2-c2nnn[nH]2)ccn1 10.1021/acs.jmedchem.2c01997
CHEMBL5274470 193818 0 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 306 3 2 5 3.0 FC(F)(F)c1ccnc(Nc2ccccc2-c2nnn[nH]2)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5278477 193982 0 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 319 3 2 2 4.5 CC#Cc1cc(Nc2ccccc2C(=O)O)cc(C(F)(F)F)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5275001 193835 0 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 295 3 2 2 4.5 Cc1ccc(C(F)(F)F)cc1Nc1ccccc1C(=O)O 10.1021/acs.jmedchem.2c01997
12429 3453 5 None - 0 Human 4.4 pEC50 = 4.4 Binding
Agonist activity at TAS2R14 (unknown origin) by stably expressed cell-based assayAgonist activity at TAS2R14 (unknown origin) by stably expressed cell-based assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
57422431 3453 5 None - 0 Human 4.4 pEC50 = 4.4 Binding
Agonist activity at TAS2R14 (unknown origin) by stably expressed cell-based assayAgonist activity at TAS2R14 (unknown origin) by stably expressed cell-based assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
CHEMBL3924866 3453 5 None - 0 Human 4.4 pEC50 = 4.4 Binding
Agonist activity at TAS2R14 (unknown origin) by stably expressed cell-based assayAgonist activity at TAS2R14 (unknown origin) by stably expressed cell-based assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
CHEMBL5289590 194470 0 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 306 3 2 3 4.0 N#Cc1ccc(C(F)(F)F)cc1Nc1ccccc1C(=O)O 10.1021/acs.jmedchem.2c01997
1193 1656 108 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
2447 1656 108 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
3371 1656 108 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
CHEMBL23588 1656 108 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
DB02266 1656 108 None - 0 Human 6.4 pEC50 = 6.4 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 281 3 2 2 4.1 OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
CHEMBL5280688 194078 0 None - 0 Human 6.3 pEC50 = 6.3 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 341 3 2 6 3.1 FC(F)(F)c1cc(Cl)nc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5268924 193586 0 None - 0 Human 6.2 pEC50 = 6.2 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 363 3 2 6 3.7 CC(C)(C)c1cc(C(F)(F)F)nc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5286379 194343 0 None - 0 Human 6.2 pEC50 = 6.2 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 359 3 2 2 4.9 O=C(O)c1ccccc1Nc1cc(C(F)(F)F)ccc1Br 10.1021/acs.jmedchem.2c01997
CHEMBL5279341 194023 0 None - 0 Human 6.2 pEC50 = 6.2 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 282 3 2 3 3.5 O=C(O)c1ccccc1Nc1cccc(C(F)(F)F)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5279932 194043 0 None - 0 Human 5.2 pEC50 = 5.2 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 323 3 3 7 2.1 Oc1cc(C(F)(F)F)nc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
13326 1052 0 None - 3 Human 7.1 pEC50 = 7.1 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 321 3 2 6 2.7 CC1=CC(=NC(NC2=C(C=CC=C2)C3=NN=NN3)=N1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
167312460 1052 0 None - 3 Human 7.1 pEC50 = 7.1 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 321 3 2 6 2.7 CC1=CC(=NC(NC2=C(C=CC=C2)C3=NN=NN3)=N1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
CHEMBL5279691 1052 0 None - 3 Human 7.1 pEC50 = 7.1 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 321 3 2 6 2.7 CC1=CC(=NC(NC2=C(C=CC=C2)C3=NN=NN3)=N1)C(F)(F)F 10.1021/acs.jmedchem.2c01997
CHEMBL5289980 194489 0 None - 0 Human 6.1 pEC50 = 6.1 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 433 3 2 6 3.0 FC(F)(F)c1cc(I)nc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
CHEMBL5276181 193888 0 None - 0 Human 6.0 pEC50 = 6.0 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 279 5 2 3 3.7 O=C(O)c1ccccc1Nc1cccc(OC(F)F)c1 10.1021/acs.jmedchem.2c01997
83293 85582 70 None - 0 Human 6.0 pEC50 = 6.0 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 247 3 2 2 3.8 O=C(O)c1ccccc1Nc1cccc(Cl)c1 10.1021/acs.jmedchem.2c01997
CHEMBL22815 85582 70 None - 0 Human 6.0 pEC50 = 6.0 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 247 3 2 2 3.8 O=C(O)c1ccccc1Nc1cccc(Cl)c1 10.1021/acs.jmedchem.2c01997
CHEMBL5285591 194303 0 None - 0 Human 7.0 pEC50 = 7.0 Binding
Agonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assayAgonist activity at human TAS2R14 transfected in HEK293T cells assessed as IP1 accumulation measured after 150 mins by IP1 accumulation assay
ChEMBL 306 3 2 5 3.0 FC(F)(F)c1cccc(Nc2ccccc2-c2nnn[nH]2)n1 10.1021/acs.jmedchem.2c01997
23857762 143802 0 None - 0 Human 5.0 pIC50 = 5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 8 1 5 3.4 COc1cccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)c1 nan
CHEMBL3901193 143802 0 None - 0 Human 5.0 pIC50 = 5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 8 1 5 3.4 COc1cccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)c1 nan
57422333 151818 0 None - 0 Human 5.0 pIC50 = 5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 349 7 1 4 2.6 CCN(Cc1ccc(OC)cc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3965320 151818 0 None - 0 Human 5.0 pIC50 = 5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 349 7 1 4 2.6 CCN(Cc1ccc(OC)cc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
4622405 27212 3 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 3 0 9 -0.7 Cc1nc(SCC(=O)N2CCOCC2)c2c(=O)n(C)c(=O)n(C)c2n1 nan
CHEMBL1366449 27212 3 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 3 0 9 -0.7 Cc1nc(SCC(=O)N2CCOCC2)c2c(=O)n(C)c(=O)n(C)c2n1 nan
57422337 145394 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 471 10 1 6 3.8 COc1cc(OC)c(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)c(OC)c1 nan
CHEMBL3913926 145394 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 471 10 1 6 3.8 COc1cc(OC)c(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)c(OC)c1 nan
57944919 144208 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 Cc1ccc(CN(CC2CCC(C(=O)O)CC2)S(=O)(=O)c2ccc(C)cc2)cc1 nan
CHEMBL3904387 144208 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 Cc1ccc(CN(CC2CCC(C(=O)O)CC2)S(=O)(=O)c2ccc(C)cc2)cc1 nan
57944960 153890 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 459 9 1 5 3.9 COc1ccc(CN(Cc2ccc(OC)c(F)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3983085 153890 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 459 9 1 5 3.9 COc1ccc(CN(Cc2ccc(OC)c(F)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57944927 146668 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 8 1 5 3.4 COc1ccccc1CN(Cc1ccco1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3923737 146668 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 8 1 5 3.4 COc1ccccc1CN(Cc1ccco1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
57422361 144001 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 471 10 1 6 3.8 COc1ccc(CN(Cc2cc(OC)cc(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3902821 144001 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 471 10 1 6 3.8 COc1ccc(CN(Cc2cc(OC)cc(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422405 148809 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 447 8 1 4 4.1 COc1ccc(CN(Cc2ccc(F)cc2F)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3940903 148809 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 447 8 1 4 4.1 COc1ccc(CN(Cc2ccc(F)cc2F)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
20914046 30732 6 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 377 3 1 6 1.5 Cc1cc2c(cc1S(=O)(=O)Nc1ccc(F)cc1)n(C)c(=O)c(=O)n2C nan
CHEMBL1395308 30732 6 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 377 3 1 6 1.5 Cc1cc2c(cc1S(=O)(=O)Nc1ccc(F)cc1)n(C)c(=O)c(=O)n2C nan
57422391 153859 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccccc1CN(Cc1ccc(C(=O)O)cc1)S(=O)(=O)c1ccccc1 nan
CHEMBL3982834 153859 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccccc1CN(Cc1ccc(C(=O)O)cc1)S(=O)(=O)c1ccccc1 nan
57422386 153276 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 8 1 4 4.3 COc1ccc(CN(C(C)c2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3977716 153276 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 8 1 4 4.3 COc1ccc(CN(C(C)c2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
25205358 143053 0 None - 0 Human 7.9 pIC50 = 7.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 7 1 3 4.1 Cc1ccc(S(=O)(=O)N(Cc2ccccc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3895068 143053 0 None - 0 Human 7.9 pIC50 = 7.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 7 1 3 4.1 Cc1ccc(S(=O)(=O)N(Cc2ccccc2)CC2CCC(C(=O)O)CC2)cc1 nan
25207290 145775 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 471 10 1 6 3.8 COc1ccc(CN(Cc2ccc(OC)c(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3916784 145775 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 471 10 1 6 3.8 COc1ccc(CN(Cc2ccc(OC)c(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
16009938 67032 2 None - 0 Human 4.8 pIC50 = 4.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 458 6 0 7 1.2 CCN(C(=O)CN(C)S(=O)(=O)c1ccc2c(c1)n(C)c(=O)c(=O)n2C)c1cccc(C)c1 nan
CHEMBL1870906 67032 2 None - 0 Human 4.8 pIC50 = 4.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 458 6 0 7 1.2 CCN(C(=O)CN(C)S(=O)(=O)c1ccc2c(c1)n(C)c(=O)c(=O)n2C)c1cccc(C)c1 nan
622959 150513 32 None - 0 Human 4.8 pIC50 = 4.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 313 7 1 3 2.7 CC(C)CN(CC(C)C)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3954532 150513 32 None - 0 Human 4.8 pIC50 = 4.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 313 7 1 3 2.7 CC(C)CN(CC(C)C)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
25205187 146398 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 444 8 2 4 3.7 CC(=O)Nc1ccc(S(=O)(=O)N(Cc2ccccc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3921682 146398 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 444 8 2 4 3.7 CC(=O)Nc1ccc(S(=O)(=O)N(Cc2ccccc2)CC2CCC(C(=O)O)CC2)cc1 nan
57944972 149458 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 459 9 1 5 3.9 COc1ccc(CN(Cc2ccc(F)c(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3946037 149458 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 459 9 1 5 3.9 COc1ccc(CN(Cc2ccc(F)c(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57944937 144599 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 420 7 2 4 3.5 Nc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3907800 144599 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 420 7 2 4 3.5 Nc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
3653046 148090 10 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 359 3 1 6 1.3 Cc1ccccc1NS(=O)(=O)c1ccc2c(c1)c(=O)n(C)c(=O)n2C nan
CHEMBL3935097 148090 10 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 359 3 1 6 1.3 Cc1ccccc1NS(=O)(=O)c1ccc2c(c1)c(=O)n(C)c(=O)n2C nan
57422382 151464 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 406 7 1 4 3.6 N#Cc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3962098 151464 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 406 7 1 4 3.6 N#Cc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
25207288 143908 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 2 5 3.5 COc1cccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccc(O)cc2)c1 nan
CHEMBL3901989 143908 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 2 5 3.5 COc1cccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccc(O)cc2)c1 nan
25205355 147704 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 445 8 1 4 4.4 COc1ccc(CN(Cc2cccc(Cl)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3931998 147704 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 445 8 1 4 4.4 COc1ccc(CN(Cc2cccc(Cl)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
1503534 143106 10 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 398 3 1 7 1.5 Cc1cc(C)c(C#N)c(NS(=O)(=O)c2ccc3c(c2)c(=O)n(C)c(=O)n3C)c1 nan
CHEMBL3895501 143106 10 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 398 3 1 7 1.5 Cc1cc(C)c(C#N)c(NS(=O)(=O)c2ccc3c(c2)c(=O)n(C)c(=O)n3C)c1 nan
25205359 147486 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 8 1 4 3.9 COc1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3930424 147486 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 8 1 4 3.9 COc1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422380 142774 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 8 1 4 4.1 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1C nan
CHEMBL3892708 142774 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 8 1 4 4.1 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1C nan
3170441 103904 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3092287 103904 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422384 144521 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 7 1 5 3.5 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc3c(c2)OCO3)cc1 nan
CHEMBL3907115 144521 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 7 1 5 3.5 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc3c(c2)OCO3)cc1 nan
3170441 103904 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3092287 103904 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422402 142425 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 8 0 4 4.1 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2cccc(OC)c2)cc1 nan
CHEMBL3889984 142425 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 8 0 4 4.1 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2cccc(OC)c2)cc1 nan
57422393 153339 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccccc2)cc1 nan
CHEMBL3978325 153339 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccccc2)cc1 nan
57422366 142982 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 3 4.1 Cc1cccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)c1 nan
CHEMBL3894410 142982 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 3 4.1 Cc1cccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)c1 nan
57422372 144737 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2cccc(F)c2)cc1 nan
CHEMBL3908873 144737 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2cccc(F)c2)cc1 nan
16034014 35175 6 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 493 8 0 4 5.0 CCOC(=O)C1CCC(CN(Cc2ccccc2)S(=O)(=O)c2ccc(Br)cc2)CC1 nan
CHEMBL1434982 35175 6 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 493 8 0 4 5.0 CCOC(=O)C1CCC(CN(Cc2ccccc2)S(=O)(=O)c2ccc(Br)cc2)CC1 nan
7424414 153455 9 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 362 3 0 7 1.1 Cn1c(=O)c2c(SCC(=O)N3CCCCCC3)ccnc2n(C)c1=O nan
CHEMBL3979438 153455 9 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 362 3 0 7 1.1 Cn1c(=O)c2c(SCC(=O)N3CCCCCC3)ccnc2n(C)c1=O nan
25205186 149457 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 405 7 1 3 3.9 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccccc2)CC1 nan
CHEMBL3946036 149457 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 405 7 1 3 3.9 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccccc2)CC1 nan
57422387 145680 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 7 1 4 4.7 COc1ccc(CN(C2CCCc3ccccc32)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3916083 145680 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 7 1 4 4.7 COc1ccc(CN(C2CCCc3ccccc32)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422371 153800 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 1 4 4.5 CSc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3982311 153800 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 1 4 4.5 CSc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
25207618 147608 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2cccc(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3931168 147608 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2cccc(OC)c2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
25206327 143131 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 10 1 5 4.2 CCCOc1ccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3895732 143131 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 10 1 5 4.2 CCCOc1ccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
25207289 147424 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 2 5 3.5 COc1ccccc1CN(Cc1ccc(C(=O)O)cc1)S(=O)(=O)c1ccc(O)cc1 nan
CHEMBL3929937 147424 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 2 5 3.5 COc1ccccc1CN(Cc1ccc(C(=O)O)cc1)S(=O)(=O)c1ccc(O)cc1 nan
5323300 143667 7 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 551 8 0 6 4.8 CCOC(=O)C1CCC(CN(Cc2cccc(Br)c2)S(=O)(=O)c2ccc3c(c2)OCCO3)CC1 nan
CHEMBL3900023 143667 7 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 551 8 0 6 4.8 CCOC(=O)C1CCC(CN(Cc2cccc(Br)c2)S(=O)(=O)c2ccc3c(c2)OCCO3)CC1 nan
1518966 31331 9 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 389 3 1 8 0.8 Cn1c(=O)c2cc(S(=O)(=O)Nc3ccc4c(c3)OCO4)ccc2n(C)c1=O nan
CHEMBL1401915 31331 9 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 389 3 1 8 0.8 Cn1c(=O)c2cc(S(=O)(=O)Nc3ccc4c(c3)OCO4)ccc2n(C)c1=O nan
1201259 149312 12 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 353 6 1 6 2.4 COc1ccc(OC)c(/C=C2\SC(=S)N(CCC(=O)O)C2=O)c1 nan
CHEMBL3944915 149312 12 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 353 6 1 6 2.4 COc1ccc(OC)c(/C=C2\SC(=S)N(CCC(=O)O)C2=O)c1 nan
5323270 152099 7 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 463 8 0 4 5.2 CCOC(=O)C1CCC(CN(Cc2ccccc2Cl)S(=O)(=O)c2ccc(C)cc2)CC1 nan
CHEMBL3967689 152099 7 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 463 8 0 4 5.2 CCOC(=O)C1CCC(CN(Cc2ccccc2Cl)S(=O)(=O)c2ccc(C)cc2)CC1 nan
57422408 150769 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 5 1 4 3.7 COc1ccc2c(c1)C(c1ccccc1)N(S(=O)(=O)c1ccc(C(=O)O)cc1)CC2 nan
CHEMBL3956466 150769 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 5 1 4 3.7 COc1ccc2c(c1)C(c1ccccc1)N(S(=O)(=O)c1ccc(C(=O)O)cc1)CC2 nan
57945008 153584 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 376 4 1 7 3.5 N#C/C(=C\c1ccc2c(c1)OCO2)C(=O)Nc1nnc(-c2ccccc2)s1 nan
CHEMBL3980504 153584 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 376 4 1 7 3.5 N#C/C(=C\c1ccc2c(c1)OCO2)C(=O)Nc1nnc(-c2ccccc2)s1 nan
4608957 151467 8 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 3 0 8 0.4 Cc1nc(SCC(=O)N2CCCCC2)c2c(=O)n(C)c(=O)n(C)c2n1 nan
CHEMBL3962122 151467 8 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 3 0 8 0.4 Cc1nc(SCC(=O)N2CCCCC2)c2c(=O)n(C)c(=O)n(C)c2n1 nan
57422373 152463 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 3 4.1 Cc1ccccc1CN(Cc1ccccc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3970999 152463 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 3 4.1 Cc1ccccc1CN(Cc1ccccc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
57422352 142707 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2ccccc2OC)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3892212 142707 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2ccccc2OC)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
1169522 148488 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 9 1 5 3.8 CCOc1ccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3938183 148488 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 9 1 5 3.8 CCOc1ccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422381 151412 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 8 1 5 3.2 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cn1 nan
CHEMBL3961709 151412 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 8 1 5 3.2 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cn1 nan
20967312 145880 4 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 472 9 1 5 4.2 CCOC(=O)C1CCC(CN(Cc2ccccc2)S(=O)(=O)c2ccc(NC(C)=O)cc2)CC1 nan
CHEMBL3917592 145880 4 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 472 9 1 5 4.2 CCOC(=O)C1CCC(CN(Cc2ccccc2)S(=O)(=O)c2ccc(NC(C)=O)cc2)CC1 nan
57944958 152623 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 7 1 4 4.0 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)c2cccs2)CC1 nan
CHEMBL3972175 152623 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 7 1 4 4.0 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)c2cccs2)CC1 nan
25207287 149618 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 2 5 3.5 COc1ccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccc(O)cc2)cc1 nan
CHEMBL3947157 149618 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 8 2 5 3.5 COc1ccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccc(O)cc2)cc1 nan
57422392 150455 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1cccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccccc2)c1 nan
CHEMBL3954153 150455 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1cccc(CN(Cc2ccc(C(=O)O)cc2)S(=O)(=O)c2ccccc2)c1 nan
25205185 103903 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 417 8 1 4 4.2 COc1ccc(CN(CC2CCCCC2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3092263 103903 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 417 8 1 4 4.2 COc1ccc(CN(CC2CCCCC2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57944905 143954 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 4 1 4 3.8 COc1ccc2c(c1)-c1ccccc1CN(S(=O)(=O)c1ccc(C(=O)O)cc1)C2 nan
CHEMBL3902438 143954 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 4 1 4 3.8 COc1ccc2c(c1)-c1ccccc1CN(S(=O)(=O)c1ccc(C(=O)O)cc1)C2 nan
57422404 144826 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 431 8 1 4 4.1 COc1cccc(CN(CC2CCC(C(=O)O)CC2)S(=O)(=O)c2ccc(C)cc2)c1 nan
CHEMBL3909546 144826 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 431 8 1 4 4.1 COc1cccc(CN(CC2CCC(C(=O)O)CC2)S(=O)(=O)c2ccc(C)cc2)c1 nan
57422346 150266 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 8 1 6 3.3 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(-c3nn[nH]n3)cc2)cc1 nan
CHEMBL3952516 150266 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 8 1 6 3.3 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(-c3nn[nH]n3)cc2)cc1 nan
25205189 142921 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 8 1 4 3.0 CCCN(Cc1ccc(OC)cc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3893863 142921 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 8 1 4 3.0 CCCN(Cc1ccc(OC)cc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
2396278 6424 26 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(Cl)cc2)cc1 nan
CHEMBL1082389 6424 26 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(Cl)cc2)cc1 nan
57422370 142830 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc(Cl)cc2)cc1 nan
CHEMBL3893065 142830 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc(Cl)cc2)cc1 nan
57422395 142721 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(CN(Cc2cccc(F)c2)S(=O)(=O)c2ccccc2)cc1 nan
CHEMBL3892321 142721 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(CN(Cc2cccc(F)c2)S(=O)(=O)c2ccccc2)cc1 nan
57422397 151494 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 2 4 3.6 O=C(O)c1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccc(O)cc2)cc1 nan
CHEMBL3962410 151494 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 2 4 3.6 O=C(O)c1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccc(O)cc2)cc1 nan
57422340 147349 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2ccc(OC)cc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3929345 147349 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2ccc(OC)cc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422375 150249 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2cccc(Cl)c2)cc1 nan
CHEMBL3952395 150249 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2cccc(Cl)c2)cc1 nan
57422394 144601 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(CN(Cc2ccccc2F)S(=O)(=O)c2ccccc2)cc1 nan
CHEMBL3907807 144601 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(CN(Cc2ccccc2F)S(=O)(=O)c2ccccc2)cc1 nan
57422374 143635 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccccc2Cl)cc1 nan
CHEMBL3899828 143635 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 1 3 4.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccccc2Cl)cc1 nan
57422339 144002 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 9 1 4 3.8 COc1ccc(CN(CCc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3902826 144002 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 9 1 4 3.8 COc1ccc(CN(CCc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422345 153125 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 2 4 3.6 O=C(O)c1ccc(CN(Cc2cccc(F)c2)S(=O)(=O)c2ccc(O)cc2)cc1 nan
CHEMBL3976457 153125 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 415 7 2 4 3.6 O=C(O)c1ccc(CN(Cc2cccc(F)c2)S(=O)(=O)c2ccc(O)cc2)cc1 nan
24134643 147794 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 7 1 4 3.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccco2)cc1 nan
CHEMBL3932685 147794 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 7 1 4 3.4 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccco2)cc1 nan
25207622 148346 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 436 8 1 5 3.7 COc1ccc(CN(Cc2ccccc2C#N)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3937130 148346 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 436 8 1 5 3.7 COc1ccc(CN(Cc2ccccc2C#N)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422383 152377 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 406 7 1 4 3.6 N#Cc1ccccc1CN(Cc1ccccc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3970253 152377 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 406 7 1 4 3.6 N#Cc1ccccc1CN(Cc1ccccc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
4547698 153604 7 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 444 6 2 2 6.0 Cc1cc(NC(=S)N(Cc2ccccc2C)CC2CCC(C(=O)O)CC2)ccc1Cl nan
CHEMBL3980678 153604 7 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 444 6 2 2 6.0 Cc1cc(NC(=S)N(Cc2ccccc2C)CC2CCC(C(=O)O)CC2)ccc1Cl nan
57462263 144624 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 4 1 6 3.3 N#C/C(=C\c1ccco1)C(=O)Nc1nnc(-c2ccccc2)s1 nan
CHEMBL3908011 144624 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 4 1 6 3.3 N#C/C(=C\c1ccco1)C(=O)Nc1nnc(-c2ccccc2)s1 nan
57422403 153864 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 426 7 1 4 3.9 Cc1ccc(S(=O)(=O)N(Cc2ccc(C#N)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3982886 153864 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 426 7 1 4 3.9 Cc1ccc(S(=O)(=O)N(Cc2ccc(C#N)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
57422401 143948 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 7 2 2 5.6 CCc1ccc(CN(CC2CCC(C(=O)O)CC2)C(=S)Nc2ccccc2C)cc1 nan
CHEMBL3902385 143948 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 7 2 2 5.6 CCc1ccc(CN(CC2CCC(C(=O)O)CC2)C(=S)Nc2ccccc2C)cc1 nan
57422364 154234 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccccc1CN(Cc1ccccc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
CHEMBL3986131 154234 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccccc1CN(Cc1ccccc1)S(=O)(=O)c1ccc(C(=O)O)cc1 nan
57422390 142631 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 7 2 4 3.5 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc(O)cc2)cc1 nan
CHEMBL3891588 142631 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 7 2 4 3.5 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc(O)cc2)cc1 nan
57422358 152549 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 8 1 4 4.1 COc1ccc(CN(Cc2ccccc2C)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3971645 152549 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 8 1 4 4.1 COc1ccc(CN(Cc2ccccc2C)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
7912365 146278 1 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 353 6 1 6 2.4 COc1cc(/C=C2\SC(=S)N(CCC(=O)O)C2=O)cc(OC)c1 nan
CHEMBL3920736 146278 1 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 353 6 1 6 2.4 COc1cc(/C=C2\SC(=S)N(CCC(=O)O)C2=O)cc(OC)c1 nan
57422363 145263 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 3 4.1 Cc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3912878 145263 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 3 4.1 Cc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422343 144597 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 7 1 3 4.2 Cc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)Cc2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3907785 144597 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 7 1 3 4.2 Cc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)Cc2ccc(C(=O)O)cc2)cc1 nan
7199504 150571 9 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 0 8 1.4 CC(=O)CSc1nc(C2CCCC2)nc2c1c(=O)n(C)c(=O)n2C nan
CHEMBL3955017 150571 9 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 0 8 1.4 CC(=O)CSc1nc(C2CCCC2)nc2c1c(=O)n(C)c(=O)n2C nan
23885504 142992 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 8 1 5 3.4 COc1ccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3894540 142992 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 401 8 1 5 3.4 COc1ccc(CN(Cc2ccco2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422367 150526 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1cccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)c1 nan
CHEMBL3954619 150526 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1cccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)c1 nan
4075726 22269 7 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 460 7 2 3 5.7 COc1ccc(CN(CC2CCC(C(=O)O)CC2)C(=S)Nc2ccc(C)c(Cl)c2)cc1 nan
CHEMBL1323541 22269 7 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 460 7 2 3 5.7 COc1ccc(CN(CC2CCC(C(=O)O)CC2)C(=S)Nc2ccc(C)c(Cl)c2)cc1 nan
5302820 152769 10 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 436 5 1 7 2.0 Cn1c(=O)c(=O)n(C)c2cc(S(=O)(=O)Nc3ccc(Cc4ccccn4)cc3)ccc21 nan
CHEMBL3973557 152769 10 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 436 5 1 7 2.0 Cn1c(=O)c(=O)n(C)c2cc(S(=O)(=O)Nc3ccc(Cc4ccccn4)cc3)ccc21 nan
57422365 151502 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccccc2F)cc1 nan
CHEMBL3962533 151502 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccccc2F)cc1 nan
770736 152428 13 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 255 2 3 4 -0.9 CNS(=O)(=O)c1ccc2[nH]c(=O)c(=O)[nH]c2c1 nan
CHEMBL3970702 152428 13 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 255 2 3 4 -0.9 CNS(=O)(=O)c1ccc2[nH]c(=O)c(=O)[nH]c2c1 nan
57422406 142698 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 5 1 4 3.9 COc1ccc(C2Cc3ccccc3CN2S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3892139 142698 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 5 1 4 3.9 COc1ccc(C2Cc3ccccc3CN2S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
5301730 149737 11 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 3 1 8 1.6 Cc1nc2ccc(NS(=O)(=O)c3ccc4c(c3)n(C)c(=O)c(=O)n4C)cc2nc1C nan
CHEMBL3948049 149737 11 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 3 1 8 1.6 Cc1nc2ccc(NS(=O)(=O)c3ccc4c(c3)n(C)c(=O)c(=O)n4C)cc2nc1C nan
16034015 26174 3 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 449 8 0 4 4.9 CCOC(=O)C1CCC(CN(Cc2ccccc2)S(=O)(=O)c2ccc(Cl)cc2)CC1 nan
CHEMBL1356858 26174 3 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 449 8 0 4 4.9 CCOC(=O)C1CCC(CN(Cc2ccccc2)S(=O)(=O)c2ccc(Cl)cc2)CC1 nan
25207451 153335 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1OC nan
CHEMBL3978302 153335 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 9 1 5 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1OC nan
57422362 146881 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 445 8 1 4 4.4 COc1ccc(CN(Cc2ccccc2Cl)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3925369 146881 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 445 8 1 4 4.4 COc1ccc(CN(Cc2ccccc2Cl)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
4986865 149405 1 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 403 3 1 8 0.8 Cn1c(=O)c2cc(S(=O)(=O)Nc3ccc4c(c3)OCCO4)ccc2n(C)c1=O nan
CHEMBL3945665 149405 1 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 403 3 1 8 0.8 Cn1c(=O)c2cc(S(=O)(=O)Nc3ccc4c(c3)OCCO4)ccc2n(C)c1=O nan
7424448 151867 10 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 5 1 7 1.0 Cn1c(=O)c2c(SCC(=O)NCc3ccccc3)ccnc2n(C)c1=O nan
CHEMBL3965603 151867 10 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 5 1 7 1.0 Cn1c(=O)c2c(SCC(=O)NCc3ccccc3)ccnc2n(C)c1=O nan
5310181 42439 10 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 391 4 0 8 0.9 CCc1nc(SCC(=O)N2CCC(C)CC2)c2c(=O)n(C)c(=O)n(C)c2n1 nan
CHEMBL1499181 42439 10 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 391 4 0 8 0.9 CCc1nc(SCC(=O)N2CCC(C)CC2)c2c(=O)n(C)c(=O)n(C)c2n1 nan
1517312 145049 9 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 351 3 1 6 0.8 Cn1c(=O)c2cc(S(=O)(=O)NC3CCCCC3)ccc2n(C)c1=O nan
CHEMBL3911317 145049 9 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 351 3 1 6 0.8 Cn1c(=O)c2cc(S(=O)(=O)NC3CCCCC3)ccc2n(C)c1=O nan
16194618 59436 8 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 450 5 0 10 -0.0 CCOC(=O)N1CCN(C(=O)CSc2nc(CC)nc3c2c(=O)n(C)c(=O)n3C)CC1 nan
CHEMBL1711155 59436 8 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 450 5 0 10 -0.0 CCOC(=O)N1CCN(C(=O)CSc2nc(CC)nc3c2c(=O)n(C)c(=O)n3C)CC1 nan
3239422 42942 2 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 403 3 1 8 0.8 Cn1c(=O)c(=O)n(C)c2cc(S(=O)(=O)Nc3ccc4c(c3)OCCO4)ccc21 nan
CHEMBL1503512 42942 2 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 403 3 1 8 0.8 Cn1c(=O)c(=O)n(C)c2cc(S(=O)(=O)Nc3ccc4c(c3)OCCO4)ccc21 nan
4552362 44934 9 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 7 1 3 3.8 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccccc2)cc1 nan
CHEMBL1523162 44934 9 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 7 1 3 3.8 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccccc2)cc1 nan
25205359 147486 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 8 1 4 3.9 COc1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3930424 147486 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 8 1 4 3.9 COc1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
24127104 147828 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc(F)cc2)cc1 nan
CHEMBL3932940 147828 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(S(=O)(=O)N(Cc2ccccc2)Cc2ccc(F)cc2)cc1 nan
23852834 147552 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 419 7 1 3 4.2 Cc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3930803 147552 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 419 7 1 3 4.2 Cc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
57945011 153097 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 462 8 2 4 3.9 CC(=O)Nc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3976205 153097 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 462 8 2 4 3.9 CC(=O)Nc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
57944918 145073 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 406 7 1 4 3.3 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)c2cccnc2)CC1 nan
CHEMBL3911496 145073 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 406 7 1 4 3.3 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)c2cccnc2)CC1 nan
57422376 154047 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 8 1 3 4.3 CCc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3984415 154047 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 8 1 3 4.3 CCc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
25206978 150380 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 0 8 -0.1 CCN(C)C(=O)CSc1nc(C)nc2c1c(=O)n(C)c(=O)n2C nan
CHEMBL3953366 150380 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 0 8 -0.1 CCN(C)C(=O)CSc1nc(C)nc2c1c(=O)n(C)c(=O)n2C nan
16189605 22615 6 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 442 8 2 4 4.8 COc1ccc(CN(CC2CCC(C(=O)O)CC2)C(=S)Nc2ccccc2OC)cc1 nan
CHEMBL1326627 22615 6 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 442 8 2 4 4.8 COc1ccc(CN(CC2CCC(C(=O)O)CC2)C(=S)Nc2ccccc2OC)cc1 nan
23827358 144329 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 8 1 4 3.9 COc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
CHEMBL3905445 144329 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 8 1 4 3.9 COc1ccc(S(=O)(=O)N(Cc2ccc(F)cc2)CC2CCC(C(=O)O)CC2)cc1 nan
1505908 33411 11 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 377 3 1 6 1.5 Cc1c(F)cccc1NS(=O)(=O)c1ccc2c(c1)c(=O)n(C)c(=O)n2C nan
CHEMBL1419634 33411 11 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 377 3 1 6 1.5 Cc1c(F)cccc1NS(=O)(=O)c1ccc2c(c1)c(=O)n(C)c(=O)n2C nan
57422396 145780 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccccc2)cc1 nan
CHEMBL3916808 145780 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 399 7 1 3 3.9 O=C(O)c1ccc(CN(Cc2ccc(F)cc2)S(=O)(=O)c2ccccc2)cc1 nan
57945018 149793 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 7 1 7 2.4 COc1cc(OC)c(/C=C2\SC(=S)N(CCC(=O)O)C2=O)c(OC)c1 nan
CHEMBL3948525 149793 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 7 1 7 2.4 COc1cc(OC)c(/C=C2\SC(=S)N(CCC(=O)O)C2=O)c(OC)c1 nan
57450324 144783 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 419 8 1 3 4.0 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)Cc2ccccc2)CC1 nan
CHEMBL3909212 144783 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 419 8 1 3 4.0 O=C(O)C1CCC(CN(Cc2ccc(F)cc2)S(=O)(=O)Cc2ccccc2)CC1 nan
57422407 151766 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 5 1 4 3.7 COc1ccc2c(c1)CCN(S(=O)(=O)c1ccc(C(=O)O)cc1)C2c1ccccc1 nan
CHEMBL3964825 151766 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 5 1 4 3.7 COc1ccc2c(c1)CCN(S(=O)(=O)c1ccc(C(=O)O)cc1)C2c1ccccc1 nan
57944921 148490 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 3 1 6 1.8 Cn1c(=O)c2cc(S(=O)(=O)Nc3ccc(Cl)cc3F)ccc2n(C)c1=O nan
CHEMBL3938203 148490 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 3 1 6 1.8 Cn1c(=O)c2cc(S(=O)(=O)Nc3ccc(Cl)cc3F)ccc2n(C)c1=O nan